21 Mei 2017

Asumsi Klasik Uji Autokorelasi Pada Regresi Berganda

Uji autokorleasi (autocorrelation) ini bertujuan untuk menguji model  regresi Ordinary Least Square (OLS) terdapat korelasi (hubungan) antara kesalahan pengganggu pada periode t dengan kesalahan penganggu pada periode sebelumya (t-1). Autokorelasi lebih mudah terjadi pada data bersifat runtut waktu. Sedangkan data cross section sangat jarang terjadi autokorelasi. Autokorelasi yang terjadi dapat bersifat autokorelasi positif maupun negative. Autokorelasi positif terjadi karena variabel yang dianalisis memiliki kecenderungan meningkat. Demikian juga apabila memiliki kecenderungan menurun akan terjadi autokorelasi negatif.
 

Uji Autokorelasi dinyatakan :


Autokorelasi

Beberapa penyebab terjadi autokorelasi :
  1. Data mengandung pergerakan naik dan menurun secara musiman. Seperti data Indeks Harga Saham Gabungan (IHSG) dan Gross Domestic Product (GDP).
  2. Data tidak bersifat stasioner.
  3. Data bersifat runtut waktu karena ada hubungan antara data periode sekarang dengan data periode sebelumnya.
Jika data yang dianalisis mengandung autokorelasi maka model estimasi yang terjadi sebagai berikut :
  1. Estimasi model masih linier
  2. Estimasi model masih tetap tidak bias
  3. Estimasi  model tidak memiliki varian yang minimum (no longer best)
Sehingga model estimasi hanya bersifat Linear Unbiased Estimates (LUE) belum bersifat BLUE.

Ada beberapa cara pengujian untuk mendeteksi adanya autokorelasi :
1.   Uji Durbin Watson (DW test).   Uji ini hanya dapat digunakan untuk autokorelasi tingkat 1 (first order autocorrelation) dan mensyaratkan adanya intercept (konstanta) dalam model regresi serta tidak ada variabel lag diantara variabel  independen.
2.   Uji Lagrange Multiplier (LM). Uji ini lebih layak digunakan untuk sampel lebih dari 100 dan derajat autokorelasi lebih dari 1. Dibandingkan dengan DW test yang hanya digunakan untuk sampel kecil. Uji LM test menghasilkan statistik Breusch-Godfrey (BG Test) sehingga biasa dinamakan uji Breusch-Godfrey. Prosedur pengujian dengan meregres variabel pengganggu (residual) Ut menggunakan autoregressive.
 
Baca juga

Referensi :

Ghozali,I. (2013). Aplikasi Analisis Multivariate dengan Program SPSS 21. Universitas Diponegoro. Semarang

Ghozali, I dan Ratmono, Dwi. (2013). Analisis Multivariat dan Ekonometrika : Teori, Konsep dan  Aplikasi dengan Eviews 8. Semarang : Badan Penerbit Undip.

Griffiths, W.E., Hill, R.C and Lim, M.A. (2008). Using Eviews for Principles of Econometrics 3rd.London New York: John Wiley &  Sons

Gujarati, D. (2011). Econometrics by Example.New York: Palgrave MacMillan

Hill, R.C., Griffiths, W.E and Judge, G.G. (2001). Using Eviews for Undergraduate Econometrics 2nd. London New York: John Wiley &  Sons

Vogelvang, B. (2005). Econometrics : Theory and Application With Eviews.LOndon New York: Pearson Eduacation

Winarno. W.W. (2011). Analisis Ekonometrika dan Statistika dengan Eviews. STIM YKPN. Yogyakarta.

06 Mei 2017

Uji Normal Pada Model Structural Equation Modeling

Dalam model Structural Equation Modeling (SEM) yang menggunakan Maximum Likelihod Estimation (MLE) mengasumsikan bahwa data  berdistribusi normal baik normal univariate dan  juga multivariate.
To assess normality it si often helpful to examine both univariate and multivariate normality indexes. Univariate distributions can be examined for outliers and skewness and kurtosis. Multivariate distributions are examined for normality and multivariate outlier (Ulmann, 2006).
 
 
Uji normalitas ini dapat dilihat pada nilai nilai Critical Ratio (CR) dari skewness dan kurtosisnya. Jika nilai CR antara rentang - 2.58 sampai dengan 2.58 (2.58) pada tingkat singnifikansi 1% (0.01), dapat disimpulkan bahwa bahwa data berdistribusi normal baik univariate maupun multivariat. Hasil uji normalitas dengan AMOS dapat dilihat di bawah ini.
 

Uji Normal Pada Output AMOS
 
Pada hasil output di atas, nilai critical ratio (CR) skewness dan kurtosis dari variabel (indikator) X1,X2, X3, X4, X5, X6, X12, X13 dan X14 menunjukkan hasil tidak ada variabel (indikator) dengan nilai CR kurang (-) 2.58 dan lebih (+) 2.58. Nilai CR dari skewness terkecil pada indikator X3 yaitu -2.331 dan tertinggi pada X2 sebesar -0.149. Demikian juga nilai CR dari kurtosis tertinggi pada indikator X6 sebesar 1.276 dan terendah X4 (-1.365). Karena nilai CR terletak diantara -2.58 dan 2.58 membuktikan bahwa variabel tersebut normal univariate. Sedangkan nilia kurtosis multivariate yang diperoleh sebesar 4.747 dengan nilai CR 2.386. Sehingga dapat disimpulkan bahwa data berdistribusi normal multivariate.
Untuk model dengan Lisrel dapat dilihat pada tabel uji normal di bawah ini.

Uji Normal Pada Output Lisrel

Pada output normalitas dengan Lisrel pengujian dilakukan dengan mengubah nilai menjadi Z standar sehingga diperoleh nilai Z score dan P-value pada skewness dan kurtosisnya. Kriteria data berdistribusi normal jika p-value dari chi-square yang didapat lebih besar dari 0.05 maka data berdistribusi normal. Terlihat bahwa nilai p-value chi-square semua variabel X1, X2, X3, X4, X5, X6, X12, X13 dan X14 memiliki nilai p-value lebih besar dari  0.05 maka dapat disimpulkan bahwa data berdistribusi normal univariate.
Sedangkan uji normal multivariate dapat dilihat pada nilai p-value dari chi-square skewness dan kurtosis. nilai Chi-square yang dihasilkan sebesar 49.058 dan p-value 0.000. Nilai ini memberikan bukti bahwa data tidak berdistribusi normal multivariate karena nilai p-value 0.000 lebih kecil dari 0.05

Baca juga :

 
Referensi :

Byrne, B.M.(1998).Structural Equation Modeling With Lisrel, Prelis and Simplis: Basic Concepts, Applications and Programing. New Jersey: Lawrence Erlabaum Associates,Inc

Raykov,T and Marcoulides, G.A.(2006).A First Course in Structural Equation Modeling 2nd. New Jersey London: Lawrence Erlbaum Associates

Ulmann,J.B.(2006).Structural Equation Modeling: Reviewing the Basics and Moving Forward.Journal of Personality Assesment, 87 (1), 35 -50.

Vieira,A,L.(2011).Interactive LISREL in Practice Getting Started with a Simplis Approach.  London New York: Springer Science

23 April 2017

Uji Chi-Square Pada Model Structural Equation Modeling (SEM)

χ2 adalah uji statistik perbedaan antara observasi dan estimasi model yang dihasilkan. Perbedaan yang dimaksud antara matriks kovarians sampel dan matriks kovarians populasi. Nilai Chi-square yang kecil dan tidak signifikan adalah nilai yang diharapkan supaya hipotesis nol (H0) diterima. Sehingga antara matrik kovarian sampel (observasi) dan kovarians populasi (estimasi model) tidak signifikan berbeda. Pengujian ini dimaskudkan untuk melihat overall fit dari model.
 
 
Untuk menguji overall fit antara matrik kovarians Sampel dan matrik kovarians populasi mengunakan likelihood ratio chi-square statistics. Nilai chi-square yang rendah menghasilkan nilai signfikansi lebih besar dari 0.05 sehingga mengindikasikan bahwa tidak ada perbedaan antara matrik kovarian sampel dan matrik kovarian populasi. Contoh output hasil uji model Kinerja Pelayanan seperti di bawah ini.

Nilai Chi-Square dan Signifikansi
 
Nilai degree of freedom (df) sebesar 126 berasal dari selisih number of distinct sample moments 171 dengan number of distinct parameters to be estimated 45. Nilai chi-square hitung yang diperoleh 151.305 dan probability level 0.062. Nilai Chi-Square tersebut sudah rendah karena lebih kecil dari chi-square tabel 153.2, dengan df 126 pada taraf signifkansi 5%. Demikian juga nilai signifikansi yang dapat dilihat pada Probability level sebesar 0.062. Dengan hasil ini menunjukkan bahwa antara matrik kovarians sampel dan matrik kovarians populasi tidak ada perbedaan yang signifikan.

Nilai Chi-square tabel pada df 126

CMIN/DF
 
Nilai χ2 dapat dibandingkan dengan degrees of freedom (df) untuk mendapatkan nilai χ2-relatif sehingga  nilai χ2-relatif yang tinggi menujukkan adanya perbedaan yang signifikan antara matriks kovarians yang diobservasi dan yang diestimasi. Nilai ini diperoleh dengan cara CMIN (The minimum sample discrepancy function) dibagi dengan degree of freedom (df) . Dalam hal ini CMIN/DF tidak lain adalah statistik chi-square (χ2) dibagi DFnya sehingga disebut χ2-relatif. χ2-relatif kurang dari 2.0 adalah indikasi dari acceptable fit antara model dan data.
Dengan contoh hasil di atas, nilai CMIN/DF dapat dihitung : 151,305/126 = 1,20 nilai ini kurang dari 2.0 maka CMIN/DF terpenuhi.

Nilai FMIN
 
Nilai Ch-Square dapat dihitung dari rumus (N-1)FMIN,dimana N adalah banyaknya jumlah sampel (200). Sehingga nilai Chi-square, (200-1) x 0.760 = 151.24. Perhitungan nilai ini terdapat selisih, lebih rendah dari output Chi-square 151,305.

Baca juga :

Referensi :

Byrne,B.M. (2010). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming 2nd. New York: Rouledge Taylor & Francis 

Ferdinand, A. (2014). Structural Equation Modeling Dalam Penelitian Manajemen. Semarang : Badan Penerbit Universitas Diponegoro.

Ghozali, I. (2011). Model Persamaan Struktural Konsep dan Aplikasi Dengan Program AMOS 19. Semarang : Badan Penerbit Universitas Diponegoro.

Kline,R.B. (2011). Principles and Practice of Structural Equation Modeling 3rd. New York London: Guilford Press

Loehlin,J.C. (2004). Latent Variable Modeling 4th: an Introduction to factor,path, and structural equation analyisis. New Jersey London: Lawrence Erlbaum Association

Maruyama,G.M. (1997). Basics of Structural Equation Modeling. London New York: Sage Publication

Mulaik,S. (2009). Linear Causal Modeling with Structural Equations. London New York: CRC Press

Muller,R.O. (1996). Basic Principles of Structural Equation Modeling : An Introduction of Lisrel and EQS. New York: Springer

Raykov,T and Marcoulides,G.A. (2006). A First Course in Structural Equation Modeling 2nd. New Jersey London: Lawrence Erlbaum Associates

Schumacker,R.E And Lomax, R.J. (2010). A Beginner's Guide Structural Equation Modeling 3rd. New Jersey London:Lawrence Erlbaum Associates

26 Februari 2017

CARA UJI REGRESI ORDINAL DENGAN SPSS

Contoh kasus : Seorang dosen ingin mengetahui hubungan antara gender dan minat belajar di sebuah universitasnya. Variabel independen terdiri dari gender dan nilai prestasi sedangkan variabel dependen (Y) adalah minat belajar yang diukur dalam 3 tingkatan yaitu rendah, sedang dan tinggi.
 

Langkah-langkah analisis regresi ordinal dengan SPSS :
1. Analyze >> Regression >> Ordinal
2. Masukan variabel Minat belajar ke kotak Dependent, Gender ke kotak Factor(s) dan Nilai prestasi ke Covariate.

Menu Regresi Ordinal
3. Pilih Option. Kita pilih Link logit. Klik Continue.

Ordinal Regression  Option

 4. Pilih Output dan tik kotak Predicted category, Estimated response probabilities dan Test of parallel lines. Klik Continue. 


Ordinal Regression Output

5. Klik OK

Hasil Output seperti di bawah ini.


Model Fitting Information

 Pada Model Fitting Information -2log Likelihood menerangkan bahwa tanpa memasukkan variabel independen (intercept only) nilainya 522.977. Namun dengan memasukkan variabel independen ke model (final) terjadi penurunan nilai menjadi 505.167. Perubahan nilai ini merupakan nilai chi-square yaitu 17,808 dan signifikan pada taraf nyata 5% (sig.0.00).


Goodness of fit

Tabel Goodness of Fit menunjukkan uji kesesuaian model dengan data. Nilai Pearson sebesar 317,892 dengan signifikansi 0,991 (> 0,05) dan Deviance sebesar 350,797 dengan signikansi 0,856 (> 0,05). Hal ini berarti model sesuai dengan data empiris atau model layak digunakan.

Pseudo R-Square
Tabel Pseudo R-Square menunjukkan bahwa seberapa besar variabel bebas (gender dan nilai prestasi) mampu menjelaskan variabel independen (minat belajar). Nilai ini seperti halnya koefesien determinasi pada regresi. Nilai Cox and Snell sebesar 0,044 (4,4%) dan Nagelkerke sebesar 0,052 (5,2%).

 
Parameter Estimates
Tabel Parameter Estimate di atas, perhatikan nilai Wald dan nilai signifikansinya. Variabel nilai prestasi sebesar 6.177 dengan sig. 0,013 (< 0,05) dan variabel gender sebesar 9,163 dengan sig.0,02 (< 0,05). Hal ini menunjukkan faktor nilai prestasi dan gender berpengaruh terhadap minat belajar.

Test of Parallel Lines
Tabel Test of Parallel Lines digunakan untuk menguji asumsi bahwa setiap kategori memiliki parameter yang sama atau hubungan antara variabel independen dengan logit adalah sama untuk semua persamaan logit. Oleh karena nilai signifikansi 0,648 (> 0,05), maka terima H0 bahwa model yang dihasilkan memiliki parameter yang sama sehingga pemilihan link function adalah sesuai. Namun sebaliknya bila asumsi ini tidak terpenuhi, maka pemilihan link function logit tidak tepat.

Baca juga :

1. Regresi Ordinal

2. Regresi Berganda

3. Regresi Logistik

Referensi :

Agresti,A. (2010). Analysis Of Ordinal Categorical Data 2nd. New Jersey: A John Wiley & Sons.Inc Field,A. (2009). Discovering Statistics Using SPSS 3rd. London: Sage Publications. 

Ghozali .I. (2013). Aplikasi Analisis Multivariate dengan Program IBM SPSS 21 Update PLS Regresi. Semarang : Badan Penerbit Universitas Diponegoro 

Hair,J.F,.Black,W.C.,Babin,B.J.,and Anderson,R.E.(2009).Multivariate Data Analysis 7th Edition.Prentice Hall.

O'Conell,A.A. (2006).Logistic Regression Models for Ordinal Response Variables.London: Sage Publications. 

Yamin,S dan Kurniawan,H. (2009). SPSS Complete :Teknik Analisis Statistik Terlengkap dengan Sofware SPSS.Jakarta : Salemba Infotek