21 Mei 2017

Asumsi Klasik Uji Autokorelasi Pada Regresi Berganda

Uji autokorleasi (autocorrelation) ini bertujuan untuk menguji model  regresi Ordinary Least Square (OLS) terdapat korelasi (hubungan) antara kesalahan pengganggu pada periode t dengan kesalahan penganggu pada periode sebelumya (t-1). Autokorelasi lebih mudah terjadi pada data bersifat runtut waktu. Sedangkan data cross section sangat jarang terjadi autokorelasi. Autokorelasi yang terjadi dapat bersifat autokorelasi positif maupun negative. Autokorelasi positif terjadi karena variabel yang dianalisis memiliki kecenderungan meningkat. Demikian juga apabila memiliki kecenderungan menurun akan terjadi autokorelasi negatif.
 

Uji Autokorelasi dinyatakan :


Autokorelasi

Beberapa penyebab terjadi autokorelasi :
  1. Data mengandung pergerakan naik dan menurun secara musiman. Seperti data Indeks Harga Saham Gabungan (IHSG) dan Gross Domestic Product (GDP).
  2. Data tidak bersifat stasioner.
  3. Data bersifat runtut waktu karena ada hubungan antara data periode sekarang dengan data periode sebelumnya.
Jika data yang dianalisis mengandung autokorelasi maka model estimasi yang terjadi sebagai berikut :
  1. Estimasi model masih linier
  2. Estimasi model masih tetap tidak bias
  3. Estimasi  model tidak memiliki varian yang minimum (no longer best)
Sehingga model estimasi hanya bersifat Linear Unbiased Estimates (LUE) belum bersifat BLUE.

Ada beberapa cara pengujian untuk mendeteksi adanya autokorelasi :
1.   Uji Durbin Watson (DW test).   Uji ini hanya dapat digunakan untuk autokorelasi tingkat 1 (first order autocorrelation) dan mensyaratkan adanya intercept (konstanta) dalam model regresi serta tidak ada variabel lag diantara variabel  independen.
2.   Uji Lagrange Multiplier (LM). Uji ini lebih layak digunakan untuk sampel lebih dari 100 dan derajat autokorelasi lebih dari 1. Dibandingkan dengan DW test yang hanya digunakan untuk sampel kecil. Uji LM test menghasilkan statistik Breusch-Godfrey (BG Test) sehingga biasa dinamakan uji Breusch-Godfrey. Prosedur pengujian dengan meregres variabel pengganggu (residual) Ut menggunakan autoregressive.
 
Baca juga

Referensi :

Ghozali,I. (2013). Aplikasi Analisis Multivariate dengan Program SPSS 21. Universitas Diponegoro. Semarang

Ghozali, I dan Ratmono, Dwi. (2013). Analisis Multivariat dan Ekonometrika : Teori, Konsep dan  Aplikasi dengan Eviews 8. Semarang : Badan Penerbit Undip.

Griffiths, W.E., Hill, R.C and Lim, M.A. (2008). Using Eviews for Principles of Econometrics 3rd.London New York: John Wiley &  Sons

Gujarati, D. (2011). Econometrics by Example.New York: Palgrave MacMillan

Hill, R.C., Griffiths, W.E and Judge, G.G. (2001). Using Eviews for Undergraduate Econometrics 2nd. London New York: John Wiley &  Sons

Vogelvang, B. (2005). Econometrics : Theory and Application With Eviews.LOndon New York: Pearson Eduacation

Winarno. W.W. (2011). Analisis Ekonometrika dan Statistika dengan Eviews. STIM YKPN. Yogyakarta.

06 Mei 2017

Uji Normal Pada Model Structural Equation Modeling

Dalam model Structural Equation Modeling (SEM) yang menggunakan Maximum Likelihod Estimation (MLE) mengasumsikan bahwa data  berdistribusi normal baik normal univariate dan  juga multivariate.
To assess normality it si often helpful to examine both univariate and multivariate normality indexes. Univariate distributions can be examined for outliers and skewness and kurtosis. Multivariate distributions are examined for normality and multivariate outlier (Ulmann, 2006).
 
 
Uji normalitas ini dapat dilihat pada nilai nilai Critical Ratio (CR) dari skewness dan kurtosisnya. Jika nilai CR antara rentang - 2.58 sampai dengan 2.58 (2.58) pada tingkat singnifikansi 1% (0.01), dapat disimpulkan bahwa bahwa data berdistribusi normal baik univariate maupun multivariat. Hasil uji normalitas dengan AMOS dapat dilihat di bawah ini.
 

Uji Normal Pada Output AMOS
 
Pada hasil output di atas, nilai critical ratio (CR) skewness dan kurtosis dari variabel (indikator) X1,X2, X3, X4, X5, X6, X12, X13 dan X14 menunjukkan hasil tidak ada variabel (indikator) dengan nilai CR kurang (-) 2.58 dan lebih (+) 2.58. Nilai CR dari skewness terkecil pada indikator X3 yaitu -2.331 dan tertinggi pada X2 sebesar -0.149. Demikian juga nilai CR dari kurtosis tertinggi pada indikator X6 sebesar 1.276 dan terendah X4 (-1.365). Karena nilai CR terletak diantara -2.58 dan 2.58 membuktikan bahwa variabel tersebut normal univariate. Sedangkan nilia kurtosis multivariate yang diperoleh sebesar 4.747 dengan nilai CR 2.386. Sehingga dapat disimpulkan bahwa data berdistribusi normal multivariate.
Untuk model dengan Lisrel dapat dilihat pada tabel uji normal di bawah ini.

Uji Normal Pada Output Lisrel

Pada output normalitas dengan Lisrel pengujian dilakukan dengan mengubah nilai menjadi Z standar sehingga diperoleh nilai Z score dan P-value pada skewness dan kurtosisnya. Kriteria data berdistribusi normal jika p-value dari chi-square yang didapat lebih besar dari 0.05 maka data berdistribusi normal. Terlihat bahwa nilai p-value chi-square semua variabel X1, X2, X3, X4, X5, X6, X12, X13 dan X14 memiliki nilai p-value lebih besar dari  0.05 maka dapat disimpulkan bahwa data berdistribusi normal univariate.
Sedangkan uji normal multivariate dapat dilihat pada nilai p-value dari chi-square skewness dan kurtosis. nilai Chi-square yang dihasilkan sebesar 49.058 dan p-value 0.000. Nilai ini memberikan bukti bahwa data tidak berdistribusi normal multivariate karena nilai p-value 0.000 lebih kecil dari 0.05

Baca juga :

 
Referensi :

Byrne, B.M.(1998).Structural Equation Modeling With Lisrel, Prelis and Simplis: Basic Concepts, Applications and Programing. New Jersey: Lawrence Erlabaum Associates,Inc

Raykov,T and Marcoulides, G.A.(2006).A First Course in Structural Equation Modeling 2nd. New Jersey London: Lawrence Erlbaum Associates

Ulmann,J.B.(2006).Structural Equation Modeling: Reviewing the Basics and Moving Forward.Journal of Personality Assesment, 87 (1), 35 -50.

Vieira,A,L.(2011).Interactive LISREL in Practice Getting Started with a Simplis Approach.  London New York: Springer Science