20 Januari 2017

Uji mediasi dengan Sobel Test

Sobel test merupakan uji untuk mengetahui apakah hubungan yang melalui sebuah variabel mediasi  secara signifikan mampu sebagai mediator dalam hubungan tersebut. Sebagai contoh  pengaruh A terhadap B melalui M. Dalam hal ini variabel M merupakan mediator hubungan dari A ke B. Untuk menguji seberapa besar peran variabel M memediasi pengaruh A terhadap B digunakan uji Sobel test. Dimana Sobel test mengunakan uji z dengan rumus sebagai berikut :

Rumus Sobel test

Kali ini diberikan contoh dari hasil uji model regresi dengan SPSS, menggunakan 3 variabel yaitu Insentif sebagai variabel independen, Movitasi sebagai Mediator dan Kinerja sebagai variabel Dependennya. Langkah regresi dilakukan sebanyak 2 kali, regresi pertama dilakukan antara Insentif terhadap Motivasi dan Kinerja kemudian yang kedua regresikan antara Motivasi terhadap Kinerja. Hasil regresi sebagai berikut :

Tabel. Koefisien Regresi Insentif terhadap  Motivasi
 
Tabel. Koefisien Regresi Motivasi dan Insentif terhadap Kinerja
Dari tabel hasil regresi menunjukkan bahwa nilai koefisien regresi Insentif terhadap Motivasi sebesar 0.296 dengan standar eror 0.056 dan nilai signifikansi 0.010 kemudian untuk Motivasi mendapatkan nilai koefisien 0.369 dengan standar eror 0.068 dan nilai signifikansi 0.000. Sehingga Insentif signifikan berpengaruh langsung terhadap Motivasi demikian juga Motivasi signifikan berpengaruh langsung terhadap Kinerja. Jika digambarkan akan terbentuk model :

Model Mediator
Model di atas merupakan model yang terbentuk dari hasil regresi pertama dan kedua sehingga membentuk model analisis jalur (path analysis) dengan variabel Motivasi sebagai mediatornya. Nilai z dari Sobel test tidak dapat dihasilkan langsung dari hasil regresi tetapi dengan perhitungan secara manual dengan rumus sobel tes. Hasil perhitungan nilai z dari sobel test adalah :

Perhitungan Sobel test

Dari hasil perhitungan sobel test di atas mendapatkan nilai z sebesar 3.786, karena nilai z yang diperoleh sebesar 3.786 > 1.96 dengan tingkat signifikansi 5% maka membuktikan bahwa Motivasi mampu memediasi hubungan pengaruh Insentif terhadap Kinerja.

Untuk lebih mudahnya menghitung nilai z dari sobel test dapat memanfaatkan online kalkulator di :


caranya : masukkan nilai koefisien regresi Insentif terhadap Motivasi = 0.296 di kolom A, nilai koefisien regresi Motivasi terhadap Kinerja = 0.369 pada kolom B. Nilai standar error pengaruh Insentif ke Motivasi pada kolom SEA = 0.056 dan nilai standar eror pengaruh Motivasi ke Kinerja pada kolom SEB = 0.068. Kemudian Klik Calculate. Seperti terlihat pada gambar di bawah ini.

Hasil nilai z dari Sobel test online calculator


16 Januari 2017

Langkah Analisis Faktor Dengan SPSS

Dalam analisis faktor ini kita menggunakan contoh kasus peningkatan pelayanan sebuah swalayan. Seorang manajer swalayan ingin mengetahui variabel-variabel apa yang dominan dipersepsikan oleh konsumen. Variabel-variabel tersebut kemudian dibuat kuesioner dan disebarkan pada pengunjung swalayan sebanyak 100 orang sebagai sampel. Variabel pertanyaan tersebut meliputi : kenyamanan, lokasi toko, kualitas produk, harga produk, tempat parkir, kebersihan, pelayanan kasir, keberagaman produk dan fasilitas, keindahan interior ruangan. Data dapat didownload SINI

Langkah Analisis Faktor
Langkah-langkah :
  1. Dari menu SPSS Klik Analyze >> Dimension Reduction >> Factor
  2. Masukkan Semua variabel kuesioner ke dalam kotak variable (s)
  3. Klik Descriptive, Klik KMO Bartletts test of Sphericity dan anti Image
  4. Klik Initial Solution
Hasil Output sebagai berikut :

Tabel KMO and Bartlet's Test
pada tabel KMO dan bartlett's test di atas terlihat angka KMO Measure of sampling Adequacy (MSA) adalah 0.568. Karena nilai 0.568 ('> 0.5). Hal ini menunjukkan kecukupan dari sampel. Angka KMO dan Bartlet's test (yang tanpak pada nilai chi-square) sebesar 574,473 dengan nilai signifikansi 0.000. hal ini menunjukkan bahwa adanya korelasi antar variabel dan layak untuk proses lebih lanjut.
Selanjutnya untuk mengetahui variabel mana yang dapat diproses lebih lanjut dan mana yang dikeluarkan dapat dilihat pada tabel Anti-image matrices di bawah ini.

Tabel Anti -image Matrices
Pada tabel Anti-image Matrice di atas, khusus pada bagian (anti Image Correlation) terlihat angka yang bertanda (a) yang menandakan besaran MSA sebuah variabel. Variabel kenyamanan 0.736, lokasi toko 0.659, Kualitas produk 0.569), harga produk 0.569, tempat parkir 0.520, kebersihan 0.652, pelayanan kasir 0.564, keberagaman produk 0.581, fasilitas 0.811 dan keindahan interior 0.517. Nilai MSA masing-masing variabel besarnya > 0.5 maka semua variabel dapat diproses lebih lanjut.

NB. Jika ada variabel yang nilai MSA < 0.5 maka dilakukan proses ulang dari awal dengan mengeluarkan variabel tersebut yang nilai MSA < 0.5.
Langkah analisis selanjutnya : 
  1. Dari menu SPSS, buka kembali analisis factor
  2. Tekan tombol reset
  3. Masukan semua variabel ke dalam kolom variables(s) karena semua variabel lolos uji pertama.
  4. Klik tombol Descriptive, Klik Initial solution, KMO and Bartlett's test of Sphericity, anti Image dan Klik Continue.
  5. Klik Extraction, Klik screee plot, Klik continue
  6. Klik Scores, Kkik save as variable Pilih regression.
  7. Klik Continue dan klik OK.

Tabel. Communaties
Tabel Communalities, variabel kenyamanan besarnya 0,551. Hal ini berarti sekitar 55,1% varians dari variabel kenyamanan dapat dijelaskan oleh faktor yang terbentuk. Variabel lokasi toko 0,483 hal ini berarti 48,3% varian dari variabel lokasi toko dapat dijelaskan oleh faktor yang terbentuk. Demikian juga untuk variabel yang lain. Semakin kecil nilai communalities berarti semakin lemah hubungannya dengan faktor yang terbentuk.
Tabel. Total Variance Explained
 Pada tabel Total Variance Explained di atas menunjukkan ada 4 faktor yang terbentuk dari 10 variabel yang di masukkan. Masing-masing faktor eigenvalue > 1. Faktor 1 eigen value sebesar 2,938 dengan variance (29,382%), Faktor 2 eigenvalue sebesar 2,024 dengan variance (20,237%), Faktor 3 eigenvalue sebesar 1,193 dengan (11,933%) dan Faktor 4 eigenvalue sebesar 1,142 dengan variance (11,422%).
Nilai eigenvalue menggambarkan kepentingan relatif masing-masing faktor dalam menghitung varians dari 10 variabel yang di analisis. Bila semua variabel dijumlahkan bernilai 10 (sama dengan banyaknya variabel).
2,938/10 x 100% = 29,38%
2,024/10 x 100% = 20,24%
1,193/10 x 100% = 11,93%
1,142/10 x 100% = 11,42%
Total varians apabila dari 10 variabel diekstrak menjadi 4 faktor adalah :
29,382 % + 20,237% + 11,933 % + 11,422% = 72,974%

Besarnya varians yang mampu dijelaskan oleh faktor baru yang terbentuk adalah 72,974% sedangkan sisanya 27,026% dijelaskan oleh faktor lain yang tidak diteliti.

Grafik Scree Plot
Gambar Screeplot menerangkan hubungan antara banyaknya faktor yang terbentuk dengan nilai eigenvalue dalam bentuk grafik.


Tabel. Rotated Component Matrix
Rotated Component matrix nilai loading faktor dari tiap-tiap variabel. Loading faktor merupakan besarnya korelasi antara faktor yang terbentuk dengan variabel tersebut. Untuk variabel kenyamanan, korelasi antara variabel kenyamanan dengan faktor 1 (0,173), faktor 2 (0,156), faktor 3 (-0,134), faktor 4 (0,692). Hal ini dapat dikatakan bahwa variabel kenyamanan masuk ke dalam Faktor 4, karena korelasinya paling tinggi diantara faktor yang lain. Demikian juga faktor loading untuk variabel yang lain.
Variabel lokasi toko nilai loading faktor dengan faktor 1 (0,265), faktor 2 (0,266), faktor 3 (0,170), faktor 4 (0,560). Maka variabel lokasi toko masuk ke Faktor 4.
Variabel kualitas produk nilai loading faktor dengan faktor 1 (0,161), faktor 2 (0,942), faktor 3 (-0,940), faktor 4 (0,40). Maka variabel kualitas produk masuk Faktor 2.
Variabel harga produk nilai loading faktor dengan faktor 1 (0,952), faktor 2 (0,163), faktor 3 (0,021), faktor 4 (0,081). Maka variabel harga produk masuk Faktor 1.
Variabel tempat parkir nilai loading faktor dengan faktor 1 (-0,088), faktor 2 (-0,110), faktor 3 (0,936), faktor 4 (0,081). Maka variabel tempat parkir masuk ke Faktor 3.
Variabel kebersihan nilai loading faktor dengan faktor 1 (0,233), faktor 2 (0,055), faktor 3 (0,413), faktor 4 (-0,110). Maka variabel kebersihan masuk Faktor 3.
Variabel pelayanan kasir nilai loading faktor dengan faktor 1 (0,166), faktor 2 (0,953), faktor 3 (-0,41), faktor 4 (-0,078). Maka variabel pelayanan kasir masuk ke Faktor 2.
Variabel keberagaman produk nlai loading faktor dengan faktor 1 (0,948), faktor 2 (0,176), faktor 3 (0,035), faktor 4 (0,036). Maka variabel keberagaman produk masuk Faktor 1.
Variabel fasilitas faktor nlai loading dengan faktor 1 (0,210), faktor 2 (0,206), dengan faktor 3 (-0,023) dan faktor 4 (0,643). Maka variabel fasilitas masuk ke Faktor 1.
Variabel keindahan interior nilai loading faktor dengan faktor 1 (0,948), faktor 2 (0,176), faktor 3 (0,035), faktor 4 (0,078). Maka variabel keindahan interior masuk Faktor 1.

Tabel. Component Transformation Matrix
Tabel Component Transformation matrix, menunjukan hasil rotasi varimax. Variabel-variabel sudah terditribusikan ke masing-masing faktor yaitu 4 faktor yang terbentuk.
Setelah dilakukan rotasi dan terbentuk 4 faktor, selanjutnya memberi nama faktor tersebut. Penamaan faktor ini tergantung peneliti dan dapat mewakili variabel-variabelnya.
  1. Faktor 1 terdiri dari variabel harga produk, keberagaman produk dan fasilitas. Diberinama Faktor Produk dan Fasilitas.
  2. Faktor 2 terdiri dari variabel kualitas produk dan pelayanan kasir. Diberinama Faktor Kualitas dan Pelayanan.
  3. Faktor 3 terdiri dari variabel kebersihan dan keindahan interior. Diberinama Faktor Kebersihan.
  4. Faktor 4 terdiri dari variabel kenyamanan dan variabel lokasi toko. Diberinama Faktor Akses.
Catatan.
Analisis faktor dapat juga digunakan sebagai salah satu analisis untuk menanggulangi masalah multikolinieritas dalam regresi berganda, yaitu dengan mereduksi variabel-variabel independen yang mengalami problem multikolineritas.

12 Januari 2017

Langkah Analisis Regresi Logistik

Setelah mengetahui dan memahami bagaimana Analisis Regresi Logisitik digunakan, kali ini akan dilakukan langkah analisis regresi logistik dengan SPSS. Contoh kasus sebagai berikut : Pemberian ASI Eksklusif dapat dipengaruhi oleh Pengetahuan ibu dan status pekerjaan. Pemberian ASI Eksklusif sebagai variabel dependen (Y) Jika diberikan ASI eksklusif (1) tidak diberi/bukan ASI eksklusif (0), variabel independen : Status pekerjaan (X1) dan pengetahuan ibu (X2). Peneliti ingin mengetahui pengaruh status pekerjaan dan pengetahuan ibu terhadap pemberian ASI Eksklusif. Data selengkapnya sebagai berikut :

Data Sampel Regresi Logistik
Langkah analisis Regresi logistik dengan SPSS
  1. Klik Analyze >> Regression >> Binary Logistic
  2. Masukkan variabel ASI Eksklusif (Y) ke dalam kolom Dependent
  3. Masukkan variabel X1 dan X2 ke dalam kolom Covariate
  4. Masukkan X1 ke dalam Categorical Covariate, klik Continue
  5. Pilih Enter pada kolom Method
  6. Klik Option, klik Classification plot dan Hosmer-Lemeshow goodness of fit, Casewise listing residuals, and All case.
  7. Klik OK
Hasil output regresi logistik

Case Processing Summary
Output Case Processing Summary menjelaskan bahwa seluruh kasus atau case ternyata teramati semua sebanyak 40 sampel, artinya tidak ada sampel yang hilang/missing.

Koding Variabel Dependen
Output di atas menggambarkan hasil proses inputdata yang digunakan pada varoiabel depeden yaitu Bukan ASI Eksklusif kode : 0 dan ASI Eksklusif kode : 1.


Tabel Categorical Variables Coding
Output di atas menjelaskan proses pengkodean yang digunakan untuk variabel independen (X1) saja, karena variabel ini adalah variabel kategori. Dapat juga dilihat yang menjadi perhatian kita adalah responden dengan status tidak bekerja (angka 1 yang diberi tanda kurung).

Tabel. Classification





Tabel. Variabel in the Equation

Tabel. Variable not in the Equation

Output di atas merupakan Blok 0 atau blok permulaan adalah proses inisialisasi artinya variabel X1 dan X2 belum dimasukkan ke dalam model penelitian. Dengan kata lain, model ini adalah model persamaan logistik yang hanya menggunakan konstanta saja untuk memprediksi rresponden masuk ke dalam kategori ASi Eksklusif atau bukan ASI Eksklusif.

Dari nilai signifikansi, diketahui konstanta yang dihasilkan adalah 0.118 ('> 0.05), hal ini berarti bahwa dengan menggunakan model persamaan sederhana (hanya konstanta saja) belum mampu memberikan penjelasan proporsi pemberianASI Eksklusif. Selanjutnya dapat dilihat pada output Blok 1.

Tabel,. Uji R-Square Cox & Snell, dan Nagelkerke


Dari tabel di atas, dapat dilihat bahwa model dengan memasukkan dua variabel independen ternyata telah terjadi perubahan dalam penaksiran parameter (-2 Log likelihood) sebesar 31.772. Jika dilihat nilai R-square sebesar 0.411 atau 41.1% (Cox & Snell) dan 0.56 atau 56% (Nagekerke). Dengan demikian dapat ditafsirkan bahwa dengan dua variabel, yaitu X1 dan X2 maka proporsi pemberian ASI Eksklusif yang dapat dijelaskan sebesar 56%. Tetapi perlu diingat bahwa interpretasi ini hanya nilai pendekatan saja seperti dalam koefisien determinasi (regresi linier biasa).

Tabel. Uji Chi square dari Hosmer and Lemeshow test
Tabel di atas merupakan uji chi-square dari Hosmer and Lemeshow test. Namun dalam penerapannya telah dilakukan modifikasi. Hipotesisnya adalah :
  • H0 = Model telah cukup menjelaskan data (Goodness of fit)
  • H1 = Model tidak cukup menjelaskan data
Kriteria uji :
Jika nilai p-value signifikansi ( '> 0.05) maka terima H0
Hasil uji chi-square yang dihasilkan memiliki nilai p-signifikansi sebesar 0.09 ( '> 0.05) maka terima H0. Jadi kesimulanya bahwa model telah cukup menjelaskan data (goodness of fit).

Tabel. Nilai Koefisien (B), Wald dan Exp (B)
Kriteria uji :
Tolak hipotesis nol (H0) jika nilai p-value signifikansi '< 0.05
Dari tabel di atas merupakan tabel utama dari analisis data dengan menggunakan regresi logistik. Nilai p-value signifikansi variabel status pekerjaan sebesar 0.034 '< 0.05 maka tolak H0. Dapat disimpulkan bahwa terdapat pengaruh yang signifikan status pekerjaan terhadap pemberian ASI eksklusif dengan nilai koefisien pengaruh  sebesar 2.090.
Nilai p-value signifikansi variabel pengetahuan sebesar 0.038 '< 0.05 maka tolak H0 yang membuktikan bahwa terdapat pengaruh yang signifikan pengetahuan ibu terhadap emberian ASI Eksklusif dengan nilai koefisien pengaruh sebesar 0.893.
Model persamaan regresi logistik.

Persamaan Regresi Logistik
Hasil persamaan regresi logistik di atas tidak bisa langsung diinterpretasikan dari nilai koefisienya seperti regresi liner biasa. Interpretasi dapat dilakukan dengan melihat nilai dari exp(B) atau nilai eksponen dari koefisien persamaan regresi yang terbentuk.
Dari exp(B1) dapat dilihat bahwa status tidak bekerja mempunyai kesempatan memberikan ASI Eksklusif 8.088 kali lebih dibandingkan dengan responden yang berstatus bekerja.
Nilai exp(B2) sebesar 2.443 artinya bahwa peningkatan pengetahuan sebesar 1 akan ada perubahan sebesar 2.443 pada pemberian ASI eksklusif. Dengan demikian bahwa jika ada peningkatan pengetahuan ibu dari rendah ke tinggi akan meningkatkan probabilitas memberikan ASI Eksklusif sebesar 2.443 kali.