PLS selain memiliki keunggulan juga memiliki beberapa kelemahan diantaranya tidak mampu menyelesaikan masalah global optimation untuk estimasi parameter. Sehingga PLS tidak memiliki garansi dapat memberikan solusi yang optimal karena tidak adanya mekanisme untuk menilai overall goodness of fit. Ukuran model fit dari PLS hanya bersifat lokal saja, dimana penilaian model fit adalah nilai akar kuadrat dari average R-square dikalikan average Comunality. Namun karena masih bersifat lokal dalam penilaian model fit menjadi sangat sulit untuk menentukan seberapa model fit (cocok) dengan data.
Dengan kelemahan PLS tersebut di atas pada tahun 2004 Heungsun Hwang dan Yoshio Takane mengembangkan model Generalized Structured Component Analysis (GSCA) dan tahun 2010 dimuat dalam jurnal “A Comparative Study on Parameter Recovery of Three Approach to Structural Equation Modeling “. Pada tahun 2012 model GSCA ini dikritik oleh Jorg Hanseler bahwa program GSCA 2004 ada kesalahan dalam algorithm sehingga menghasilkan inkonsistensi skala terhadap variabel observed dan laten. Dimana nilai observed standardized tersebut merupakan nilai sementara variabel laten normalized. Hal ini mengakibatkan kesalahan perhitungan nilai parameter estimate, nilai goodness of fit FIT dan Average FIT.
“Generalized structured component analysis is similar to partial least squares path modeling in many ways. Consequently, it inherits many of the advantages of partial least squares path modeling, which were outlined in the prvious section. At the same time, it overcomes some crucial disadvantages. In generalized structured component analysis, a global optimation criterion is explicitly defined and optimized throughout iterations. As in the factor based approach, both measurement and structural models are sparately stated and then combined into a unified framework under a single common optimation criterion.
Baca juga :
Referensi :
Hanseler,J. (2012). Why Generalized Structured Component Analysisis not Universally Preferable to structural Equation Modeling. Journal of Academic Marketing Science.40.402-413.
Hwang, H and Takane, Y. (2004). Generalized Stuctured Component Analysis. Psychometrica. Vol.69 No 1 pp.81-99.
Hwang, H and Takane, Y. (2015). Generalized Structured Component Analysis : A Component Based Approach to Structural Equation Modeling. CRC Press.
Karlina, A.K dan Imam, G. (2013). Generalized Structured Component Analysis (GeSCA). Semarang. Universitas Diponegoro.
Assalamu'alaikum, permisi pak saya mau bertanya.
BalasHapusbisa minta tolong jelaskan perbedaan (kelebihan dan kekurangan) berbagai software untuk analisis PLS seperti SmartPLS, WarpPLS, GSCA, dan PlS-GUI? atau jika terlalu panjang, kira2 apa kelebihan Warp-PLS dibanding software yang lain?